Secondary Math 3 Unit 6 Test Review

Sketch each of the following angles in standard position. State each angle's reference angle, and find a coterminal angle between 0° and 360° or between -360° and 0°.

1. 137°

 $2. -160^{\circ}$

Reference Angle:

Coterminal Angle: _____

$$3. \quad -\frac{\pi}{4}$$

Reference Angle:

Coterminal Angle:

$$4. \quad \frac{7\pi}{3}$$

Reference Angle:

Coterminal Angle:

Reference Angle:

Coterminal Angle:

Convert each radian measurement to a degree measurement, and each degree measurement to a radian measurement. **Show all of your work!**

5. 405°

6.
$$\frac{11\pi}{12}$$

Find the arc length. Show your work and round your answers to the nearest tenth.

7.
$$r = 11 \text{ km}, \theta = 90^{\circ}$$

8.
$$r = 14 \text{ mi}, \theta = \frac{5\pi}{4}$$

Find the sector area. Show your work and round your answer to the nearest tenth.

9.
$$r = 9 \text{ cm}, \theta = 45^{\circ}$$

Find the exact values of $\sin \theta$, $\cos \theta$, $\tan \theta$, $\csc \theta$, $\sec \theta$, and $\cot \theta$ where θ is an angle in standard position whose terminal side contains the given point. Write answers in simplest form.

10. (12,-7)

$$\sin \theta =$$

$$\cos \theta$$
=____

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

Draw the two triangles for the trig functions and find the coordinates that go with it. There will be 2 answers. Leave answers in simplest radical form. (Remember All Students Take Calculus). Then find the angles from [0, 360°) in standard position (round to the nearest tenth of a degree).

11. $\sin(\theta) = \frac{7}{25}$

Coordinates: _____ and _____

Angles: and

Coordinates: _____ and ____

14. $\sin(\theta) = -\frac{6}{13}$

Angles: ______ and _____

13. $\cos(\theta) = -\frac{1}{3}$

Coordinates: _____ and ____

Coordinates: _____ and ____

Angles: _____ and _____

Angles: _____ and _____

Find the missing sides using special right triangle rules $(30^{\circ} - 60^{\circ} - 90^{\circ})$ or $45^{\circ} - 45^{\circ} - 90^{\circ}$. Leave answer in simplest radical form.

15.

17.

18.

Find all angles in the interval $[0^{\circ}, 360^{\circ})$ that satisfy each equation.

19.
$$\cos(\theta) = \frac{1}{\sqrt{2}}$$

20. $tan(\theta)=1$

Degree: _____ and ____

Radian: _____ and ____

Degree: _____ and ____

Radian: _____ and ____

21.
$$2\sin(\theta) + \sqrt{3} = 0$$

Degree: _____ and _____

Radian: _____ and ____

22.
$$\sqrt{3}\tan(\theta) = -1$$

Degree: _____ and ____

Radian: _____ and ____