Unit 4A Name

Date _____ Period _____

Unit 4A Test Review

- 1. Write an equation in **factored form** for the function with the given zeros: x = 5, -4, 1
- 2. Write an equation in standard form for the function with the given zeros: x = -3, 4

For the given polynomials, determine which of the binomials listed are factors using the Remainder Theorem. Show work!

3. $f(x) = x^2 + 3x - 10$	4. $f(x) = x^3 - 2x^2 - 5x + 6$
a. <i>x</i> +2	a. $x + 2$
b. <i>x</i> -2	b. <i>x</i> -1
c. <i>x</i> +5	c. <i>x</i> +9

Find how many zeros each polynomial has and list the end behavior for the following:

- 6. $f(x) = x^5 x^2 + 8x 13$ 5. $f(x) = x^8 + 16x$ a. Number of Zeros:
 - b. Left End Behavior: $\lim_{x \to -\infty} f(x) =$
 - c. Right End Behavior: $\lim_{x \to \infty} f(x) =$

- a. Number of Zeros:
 - b. Left End Behavior: $\lim_{x \to \infty} f(x) =$
 - c. Right End Behavior: $\lim_{x \to \infty} f(x) =$
- 8. $f(x) = -x^6 13x + 7$ 7. $f(x) = -x^3 - 45$ a. Number of Zeros: a. Number of Zeros:
 - b. Left End Behavior: $\lim_{x \to \infty} f(x) =$
 - c. Right End Behavior: $\lim_{x \to \infty} f(x) =$

- b. Left End Behavior: $\lim_{x \to -\infty} f(x) =$
 - c. Right End Behavior: $\lim_{x \to \infty} f(x) =$

<u>Find the zeros</u> of the function by factoring or using the quadratic formula.

9.
$$f(x) = x^2 - 49$$
 10. $f(x) = 5x^2 + 8x - 4$

11.
$$f(x) = x^2 + 13x + 36$$

12. $f(x) = x^2 - 4x - 8$

13.
$$f(x) = x^2 + 8x + 17$$

14.
$$f(x) = x^2 + 16$$

15. $f(x) = x^2 - 10x + 34$

List the zeros of each polynomial. State the multiplicity of each zero and determine whether the graph crosses or touches the x-axis at the corresponding x-intercept.

16.
$$f(x) = x^4(x-1)(x+8)$$
 17. $f(x) = (x-2)^3(x+6)^3(x-10)$

Zero	Multiplicity	Touch/Cross	Zero	Multiplicity	Touch/C
			ZCIU	Withipficity	Touch/C

Without using a graphing calculator, sketch the graph each function below. Identify the zeros, multiplicity, and whether the graph touches or crosses the x-axis. Determine the end behavior.

Zero	Multiplicity	Touch/Cross

$$\lim_{x\to -\infty} f(x) =$$

 $\lim_{x\to\infty}f(x) =$

Zero	Multiplicity	Touch/Cross

 $\lim_{x\to\infty}f(x)=$

 $\lim_{x\to\infty}f(x) =$

Determine the domain of each of the following functions.

Graph: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 Graph: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Use the following functions with their graphs to answer the following questions.

25. $g(x) = x^3$

Domain:	Positive:
Range:	Negative:
x-intercept(s):	Maximums/Minimums:
y-intercept:	Symmetry:
Increasing:	End Behavior:
Decreasing:	$\lim_{x\to\infty}f(x)=$
Constant:	$\lim_{x \to +\infty} f(x) =$

Domain:	Positive:
Range:	Negative:
x-intercept(s):	Maximums/Minimums:
y-intercept:	Symmetry:
Increasing:	End Behavior:
Decreasing:	$\lim_{x\to\infty}f(x)=$
Constant:	$\lim_{x \to +\infty} f(x) =$

Use the six graphs below to answer questions 6-13 Each problem may have more than one answer.

27. Which graph(s) have no zeros?

- 28. Which graph(s) have a domain of $(-\infty, \infty)$?
- 29. Which graph(s) have a range of $[0, \infty)$?
- 30. Which graph(s) are increasing on part of their domain and decreasing on part of their domain?
- 31. Which graph(s) have a y-intercept of (0, 0)?
- 32. Which graph(s) have even symmetry?
- 33. Which graph(s) have odd symmetry?
- 34. Which graph(s) have neither even nor odd symmetry?