\qquad Date \qquad Period \qquad

Unit 4A Test Review

1. Write an equation in factored form for the function with the given zeros: $x=5,-4,1$
2. Write an equation in standard form for the function with the given zeros: $x=-3,4$

For the given polynomials, determine which of the binomials listed are factors using the Remainder Theorem. Show work!
3. $f(x)=x^{2}+3 x-10$
4. $f(x)=x^{3}-2 x^{2}-5 x+6$
a. $x+2$
b. $x-2$
a. $x+2$
b. $x-1$
c. $x+5$
c. $x+9$

Find how many zeros each polynomial has and list the end behavior for the following:
5. $f(x)=x^{8}+16 x$
a. Number of Zeros:
6. $f(x)=x^{5}-x^{2}+8 x-13$
a. Number of Zeros:
b. Left End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$
c. Right End Behavior: $\lim _{x \rightarrow \infty} f(x)=$
b. Left End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$
c. Right End Behavior: $\lim _{x \rightarrow \infty} f(x)=$
7. $f(x)=-x^{3}-45$
a. Number of Zeros:
b. Left End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$
c. Right End Behavior: $\lim _{x \rightarrow \infty} f(x)=$
8. $f(x)=-x^{6}-13 x+7$
a. Number of Zeros:
b. Left End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$
c. Right End Behavior: $\lim _{x \rightarrow \infty} f(x)=$

Find the zeros of the function by factoring or using the quadratic formula.
9. $f(x)=x^{2}-49$
10. $f(x)=5 x^{2}+8 x-4$
11. $f(x)=x^{2}+13 x+36$
12. $f(x)=x^{2}-4 x-8$
13. $f(x)=x^{2}+8 x+17$
14. $f(x)=x^{2}+16$
15. $f(x)=x^{2}-10 x+34$

List the zeros of each polynomial. State the multiplicity of each zero and determine whether the graph crosses or touches the x -axis at the corresponding x -intercept.
16. $f(x)=x^{4}(x-1)(x+8)$
17. $f(x)=(x-2)^{3}(x+6)^{3}(x-10)$

Zero	Multiplicity	Touch/Cross

Zero	Multiplicity	Touch/Cross

Without using a graphing calculator, sketch the graph each function below. Identify the zeros, multiplicity, and whether the graph touches or crosses the x-axis. Determine the end behavior.
18. $f(x)=(x-4)^{5}(x+5)^{2}(x-7)$

Zero	Multiplicity	Touch/Cross

$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow \infty} f(x)=$

Zero	Multiplicity	Touch/Cross

$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow \infty} f(x)=$

Determine the domain of each of the following functions.
20. $f(x)=x+5$

Interval Notation:
Set Notation:

21. $f(x)=-7 \sqrt{-4 x+8}+5$

Interval Notation:
Set Notation:

22. $f(x)=\sqrt{x+1}$

Interval Notation:
Set Notation:

Graph: $\underset{-8}{\leftrightarrows-7}-1$
23. $f(x)=-(x+2)^{2}-4$

Interval Notation:
Set Notation:

Use the following functions with their graphs to answer the following questions.
24. $f(x)=-\sqrt{x-2}+5$

Domain: Positive:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:
$\lim _{x \rightarrow-\infty} f(x)=$

Constant:
$\lim _{x \rightarrow+\infty} f(x)=$
25. $g(x)=x^{3}$

Domain:
Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:

Constant:

Domain:

Range:
x-intercept(s):
y-intercept:
Increasing:
Decreasing:

Constant:

Positive:
Negative:
Maximums/Minimums:
Symmetry:
End Behavior:
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow+\infty} f(x)=$
26. $h(x)=|x+4|-2$

Positive:
Negative:
Maximums/Minimums:
Symmetry:
End Behavior:
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow+\infty} f(x)=$

Use the six graphs below to answer questions 6-13 Each problem may have more than one answer.
A. $f(x)=x$

D. $f(x)=\sqrt[3]{x}$

B. $f(x)=|x|+2$

E. $f(x)=x^{3}+5$

C. $f(x)=\sqrt{x}$

F. $f(x)=x^{2}$

27. Which graph(s) have no zeros?
28. Which graph(s) have a domain of $(-\infty, \infty)$?
29. Which graph(s) have a range of $[0, \infty)$?
30. Which graph(s) are increasing on part of their domain and decreasing on part of their domain?
31. Which graph(s) have a y-intercept of $(0,0)$?
32. Which graph(s) have even symmetry?
33. Which graph(s) have odd symmetry?
34. Which graph(s) have neither even nor odd symmetry?

