Review

SM3 Test Review Unit 11

Name ______ Date _____ Period_____

Evaluate the logarithm without a calculator. Show work!

1.
$$\log_6\left(\frac{1}{36}\right)$$

2.
$$10^{\log 5}$$

3.
$$\log 1000$$
 4. $\log_{21} \sqrt{21}$

5.
$$\ln \frac{1}{\sqrt{e}}$$

5.
$$\ln \frac{1}{\sqrt{e}}$$
 6. $\log_7 343$ 7. $\log_6 6^2$

7.
$$\log_6 6^2$$

8.
$$e^{\ln 20}$$

9.
$$\log_8 \frac{1}{64}$$

Find the following using a calculator. Round to the nearest ten thousandths.

14.
$$\log(-3)$$

Rewrite as an exponential function.

16.
$$\log x = 4$$

17.
$$\ln 5 = x$$

18.
$$\log_3 243 = 5$$

Rewrite as a logarithmic function.

19.
$$5^4 = 625$$

20.
$$10^x = 100$$

21.
$$e^2 = x$$

Solve each function by making the bases the same. DO NOT use logarithms!

22.
$$2^{3x} = 8$$

23.
$$3^{2x-1} = 3^5$$

Describe how to transform the graph of the basic function g(x) into the graph of the given function f(x).

24.
$$g(x) = \ln x$$
; $f(x) = \ln(-x) - 7$

25.
$$g(x) = 2^x$$
; $f(x) = 3 \cdot 2^{x+3}$

26. Determine the function that best describes the given graph.

c.
$$y = \ln x + 5$$

b.
$$y = \ln(x - 5)$$
 d. $y = \ln(x + 5)$

d.
$$y = \ln(x + 5)$$

Rewrite the expression as a sum or difference or multiple of logarithms.

27.
$$\log_2\left(\frac{5x}{y}\right)$$

$$28. \log_8\left(\frac{2x-3}{x^4}\right)$$

Use the product, quotient and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

29.
$$\log_3 6 - \log_3 a$$

30.
$$4\log x + 2\log y$$

30.
$$4\log x + 2\log y$$
 31. $2\log_4 3 + \log_4 (x-5) - 7\log_4 x$

Write the change of base rule to find the logarithm to the nearest ten thousandths.

Use the change of base rule to write the expression using only natural logarithms.

34.
$$\log_5(a+b)$$

Use the change of base rule to write the expression using only common logarithms.

35.
$$\log_4(4x)$$

Solve each equation. Show work. Round to the nearest thousandths if necessary.

36.
$$\log_4 x = \frac{1}{2}$$

37.
$$3e^{(2x-7)} = 8$$

38.
$$\log_2(x+2) = 5$$

$$39. \quad \log\left(\frac{3}{5}x - 2\right) = 5$$

40.
$$-10^{x-2} + 8 = -20$$

41.
$$\log_5 4x = \log_5 10$$

42.
$$\log_3(x+4) - \log_3 4 = \log_3 22$$

43.
$$\log_5 4 + \log_5 (3x - 4) = 2$$

44.
$$4^{(x-5)} + 4 = 9$$

45.
$$5 - \ln x = 8$$

Use the given function f to:

(a) Find the domain of f and any asymptotes of f. (b) Write the transformations. (c) Graph f. (d) From the graph determine the range.

Use transformations and a table of values for at least 3 key points to get the graphs. No graphing calculators!

46.
$$f(x) = \left(\frac{1}{2}\right)^{x-1}$$

Domain:

Asymptote:

Key points and transformations:

x	f(x)

х	f(x)

Range:

47.
$$f(x) = -3^x + 2$$

Domain:

Asymptote:

Key points and transformations:

х	f(x)

х	f(x)

Range:

$g_2 x + 1$

Domain:

Asymptote:

Key points and transformations:

х	f(x)

х	f(x)

Range:

Domain:

Asymptote:

Key points and transformations:

х	f(x)

х	f(x)

Range:

