SM3 Financial Models \& Growth and Decay Models

Name \qquad Date \qquad Period \qquad

Find the amount that results from each investment. Round answers to the nearest cent.

Compounded Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$

1. $\$ 100$ invested at 4% compounded quarterly after a period of 2 years.
2. $\$ 1000$ invested at 11% compounded monthly after a period of 2 years.

Compounded Continuously Equation: $A=P e^{r t}$
3. If Tanisha has $\$ 100$ to invest at 8% per annum compounded monthly, how long will it be before she has \$150?

Find the principal needed now to get each amount; that is, find the present value. Round answers to the nearest cent. Compounded Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$
4. To get $\$ 100$ after 2 years at 6% compounded monthly
5. To get $\$ 300$ after 4 years at 3% compounded quarterly

Growth \& Decay Applications Law of uninhibited growth or decay: $A(t)=A_{0} e^{k t}$
6. The size P of a certain insect population at time t (in days) obeys the function $P(t)=500 e^{0.02 t}$.
a) Determine the number of insects at $=0$ days.
b) What is the growth rate of the insect population?
c) What is the population after 10 days?
d) When will the population reach 800 ?
e) When will the insect population double?
7. The population of a colony of mosquitos obeys the law of inhibited growth.
a) If there are 1000 mosquitoes initially and there are 1800 after day 1 , find the rate of decay.
b) What is the size of the colony after 3 days?
c) How long is it until there are 10,000 mosquitoes?
d) How long is it until the population doubles?

