9.7 SM3 Solving Logarithmic Equations 2019-2020		9-2020
Name	Date	Period
Find the exact solution al	gebraically, and check it by substituting into the orig	inal equation. Show work!
1. $32\left(\frac{1}{4}\right)^{x/3} = 2$	2. $2 \cdot 5^{x/4} = 250$	3. $3(5^{-x/4}) = 15$
4. $\log_2 x = 5$	5. $\log x = 3$	6. $\log_4(x-5) = -1$

Solve each equation. If necessary, obtain a numerical approximation for your solution by rounding to the nearest ten thousandths. Check your solution by substituting into the original equation. Show work!

7.
$$3^x = 25$$
 8. $0.95^x = 1.3$ 9. $40e^{0.025x} = 200$

10.
$$3+2e^{-x}=11$$
 11. $4^{5-x}-2=13$ 12. $\ln x^2=6$

13. $\log x^2 = 4$ 14. $\log_3(3x - 2) = 3$

15. $\log_3 x = \log_3 7$ 16. $\log_5 x = \log_5(2x - 3)$

17. $\log_{10} 2 + \log_{10}(x+21) = 2$ 18. $\log_9 5 + \log_9(n+1) = \log_9 6n$

19. $\log_3 2 + \log_3 8 = \log_3 2x$ 20. $\log_5 42 - \log_5 7 = \log_5(3x - 1)$

21. The value of a Honda Civic DX that is *t* years old can be modeled by $V(t) = 16,775(0.905)^{t}$. According to the model, when will the car be worth \$15,000? \$8,000? \$4,000? Show work!