Name $\qquad$ Date $\qquad$ Period $\qquad$
Find the exact solution algebraically, and check it by substituting into the original equation. Show work!

1. $32\left(\frac{1}{4}\right)^{x / 3}=2$
2. $2 \cdot 5^{x / 4}=250$
3. $3\left(5^{-x / 4}\right)=15$
4. $\log _{2} x=5$
5. $\log x=3$
6. $\log _{4}(x-5)=-1$

Solve each equation. If necessary, obtain a numerical approximation for your solution by rounding to the nearest ten thousandths. Check your solution by substituting into the original equation. Show work!
7. $3^{x}=25$
8. $0.95^{x}=1.3$
9. $40 e^{0.025 x}=200$
10. $3+2 e^{-x}=11$
11. $4^{5-x}-2=13$
12. $\ln x^{2}=6$
13. $\log x^{2}=4$
14. $\log _{3}(3 x-2)=3$
15. $\log _{3} x=\log _{3} 7$
16. $\log _{5} x=\log _{5}(2 x-3)$
17. $\log _{10} 2+\log _{10}(x+21)=2$
18. $\log _{9} 5+\log _{9}(n+1)=\log _{9} 6 n$
19. $\log _{3} 2+\log _{3} 8=\log _{3} 2 x$
20. $\log _{5} 42-\log _{5} 7=\log _{5}(3 x-1)$
21. The value of a Honda Civic DX that is $t$ years old can be modeled by $V(t)=16,775(0.905)^{t}$. According to the model, when will the car be worth $\$ 15,000$ ? $\$ 8,000$ ? $\$ 4,000$ ? Show work!

