

SM3 9.5-9.8 Test Review

Name		Date	Period
Evaluate the logarithm without a calculator. Show work!			
1. $\log_6\left(\frac{1}{36}\right)$	2. 10 ^{log 5}	3. log 1000	4. $\log_{21}\sqrt{21}$
5. $\ln \frac{1}{\sqrt{e}}$	6. log ₇ 343	7. $\log_6 6^2$	8. e ^{ln20}
9. $\log_8 \frac{1}{64}$	10. ln e	11. log ₁₂ 1	
Find the following using a calculator. Round to the nearest ten thousandths.			
12. log 32	13. ln 0.98	14. log(-3)	15 . 5 ^{3.2}
Rewrite as an exponential function.			
16. $\log x = 4$	17. $\ln 5 = x$		18. log ₃ 243 = 5
Rewrite as a logarithmic function.			
19. $5^4 = 625$	20. 10 ^x	= 100	21. $e^2 = x$

Solve each function by making the bases the same. DO NOT use logarithms!

22. $2^{3x} = 8$ 23. $3^{2x-1} = 3^5$

Expand the following logarithms.

24.
$$\log_2\left(\frac{5x}{y}\right)$$
 25. $\log_8\left(\frac{2x-3}{x^4}\right)$

Condense the following logarithms.

26. $\log_3 6 - \log_3 a$ 27. $4\log x + 2\log y$ 28. $2\log_4 3 + \log_4 (x-5) - 7\log_4 x$

Write the change of base rule to find the logarithm to the nearest ten thousandths.

 29. log_{3.4} 210
 30. log₄ 3.8

Solve each equation. Show work. Round to the nearest thousandths if necessary.

31. $\log_4 x = \frac{1}{2}$ 32. $\log_5(x-4) - \log_5 5 = 2$

33. $\log_2(x+2) = 5$ 34. $\log_4(4x) + \log_4(x) = 4$

35. $-10^{x-2} + 8 = -20$ 36. $\log_5 4x = \log_5 10$

Solve the following exponentials for x. Hint: Rewrite as a log and solve for x.

 $37.5^{x-10} = 9$ $38.5 \cdot 3^{2-x} - 6 = 34$ $39.e^{x-3} = 29$

40. If you have \$15,000 to invest at 4.75% per annum how much will you have after 5 years if the money is compounded continuously.

41. How much will result if you invest \$10,000 for 3 years at an interest rate of 10% if the money is compounded quarterly?

42. Which will have the highest result compounding daily or compounding continuously \$5000 at 7.3% for 2 years? What would each of the results be?

For problems 43-45, the population, P, of a growing city at time t(in years) obeys the function $P(t) = 500000e^{.08t}$.

43. What is the initial size of the city?

- 44. Is the exponential function a growth or decay? What is the growth or decay rate?
- 45. What will the population of the city be in 10 years if it continues this growth rate?

46. How long will it take for it to double its size?