Law of Sines Find the area of each triangle to the nearest tenth. 1. 2. Using trigonometric rations, find the measure of each angle indicated. Round to the nearest tenth. 3. 4 Find each measurement indicated. Round you answers to the nearest tenth. 5. Find $m \angle A$. 6. Find $m \angle A$. 7. Find \overline{AB} . 8. Find \overline{AB} . Solve each triangle. Round you answers to the nearest tenth. $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ $$m \angle A = \underline{\qquad} a = \underline{\qquad}$$ $$m \angle B = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ 11. $m \angle A =$ _____ a =_____ $$m \angle B = \underline{\qquad} b = \underline{\qquad}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ 12. *m*∠*A* = _____ *a* = _____ $$m \angle B = \underline{\qquad} b = \underline{\qquad}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ $m \angle A =$ _____ a =_____ $$m \angle B = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}}$$ $$m \angle B = \underline{\qquad} b = \underline{\qquad}$$ $m \angle C = \underline{\qquad} c = \underline{\qquad}$ 14. 15. $$m \angle A = 113^{\circ}$$, $c = 10$ ft, $a = 21$ ft $$m \angle A = \underline{\qquad} a = \underline{\qquad}$$ $$m \angle B = \underline{\qquad} b = \underline{\qquad}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ 16. $$m \angle C = 16^{\circ}, m \angle A = 139^{\circ}, c = 13 \text{ in}$$ $$m \angle A =$$ _____ $a =$ _____ $$m \angle B = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ 17. $$m \angle C = 107^{\circ}, m \angle B = 52^{\circ}, b = 33 \text{ mi}$$ $$m \angle A = \underline{\qquad} a = \underline{\qquad}$$ $$m\angle B = \underline{\qquad} b = \underline{\qquad}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$ 18. $$m \angle A = 145^{\circ}, m \angle C = 13^{\circ}, c = 9 \text{ in}$$ $$m \angle B = \underline{\qquad} b = \underline{\qquad}$$ $$m \angle C = \underline{\qquad} c = \underline{\qquad}$$