\qquad Date \qquad Period \qquad

Complex Zeros

Simplify each of the following radicals. Show work if necessary.

1. $\sqrt{-1}$
2. $\sqrt{-25}$
3. $\sqrt{-72}$
4. $3 \pm \sqrt{-45}$

Simplify. Show work if necessary.
5. $(-6 i)(-5 i)$
6. $3(2 i)(-4 i)$
7. $(-2 i)(2 i)$
8. $(5 i)(5 i)$
10. $(x-i)(x+i)$
9. $(3+i)(5-2 i)$
11. $(x-4+i)(x-4-i)$
12. $(x-3+2 i)(x-3-2 i)$

Find the zeros of each polynomial. Then write the factored form of the polynomial. Show work!
13. $f(x)=x^{2}+9$

Factored Form:

Zeros:
14. $f(x)=x^{2}+64$

Factored Form:

Zeros:
15. Explain the shortcut to factor $f(x)=x^{2}+16$ without showing work. Then write the factored form.

Find the zeros using the quadratic formula. Show work! HINT: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
16. $f(x)=x^{2}-4 x+5$
17. $f(x)=x^{2}-2 x+10$
18. $f(x)=2 x^{2}+6 x+5$
19. $f(x)=9 x^{2}-6 x+5$

Identify the zeros of the function and the x-intercepts of its graph. Write the polynomial in standard form. Show work!
20. $f(x)=(x-3 i)(x+3 i)$

Zeros:
x-intercepts:

Standard form:
21. $f(x)=(x-1)(x+1)(x+2 i)(x-2 i)$

Zeros:
x-intercepts:

Standard form:

Write a polynomial function of minimum degree in factored form with real coefficients whose zeros include those listed, find the degree of the polynomial (\# of zeros) and identify the x-intercepts.
22. $1-2 i$ and $1+2 i$
Zeros:
23. 2, 3, and i
Zeros:
x-intercepts:
x-intercepts:

Factored form:
Factored form:
24. -2 and $1+2 i$
25. -4 and $2 i$

Zeros:
Zeros:
x-intercepts:
x-intercepts:

Factored form:
Factored form:

Write a polynomial function of minimum degree in factored form with real coefficients using the following information. Find the degree of the polynomial (\# of zeros), the zeros and identify the x-intercepts.
26. 1 (multiplicity of 2), -2 (multiplicity of 3)

Degree:
Zeros:
x-intercepts:
Factored form:
27. 2 (multiplicity of 2), $3+i$ (multiplicity of 1)

Zeros:
Factored form:

Degree:
x-intercepts:

