| |
- | - | - | Special Contract Cont | - | - | |-------|-------|---|---|--|---|---| | Name: | | | | | | | | | | | | | | | Period: Filled in Notes ## **SM2H Unit 6 Circle Notes** **Objectives:** - Sketch the graph of a circle, given the equation. - Given the general equation of a circle, complete the square to find the center. #### Circles | Circles with Center (h, k) | | | | | | | | |----------------------------|---------------------------|---|---|------|--|--|--| | General Equation | χ^2+q^2+A x+By+C = 0 | * | | (11) | | | | | Radius | * " | . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | r | | | | | Circle: The set of all points in the xy-plane that are a fixed distance r, called the radius, from a fixed point (h,k), called the center of the circle. Standard Form of the Equation of a Circle with radius r and center (h, k): $$(x-h)^2 + (y-k)^2 = r^2$$ eneral Form of the Equation of a Circle: $$x^2 + y^2 + Ax + By + C = 0$$ To find the standard form of the equation of a circle when you know the general form, complete the square for both x and y. Distance Formula $$\sqrt{(x_2-x_1)^2+(y_2-y_4)^2}=d$$ Midpoint Formula $$\left(\begin{array}{c} x_1+y_2\\ 2 \end{array}\right) \begin{array}{c} y_1+y_2\\ 2 \end{array}\right)$$ Example: Find the distance between the two given points. 1. $$P_1 = (-2, 10)$$ and $P_2 = (5, 4)$ $$D = \sqrt{(-2-5)^2 + (10-4)^2}$$ $$D = \sqrt{49 + 36}$$ $$D = \sqrt{85}$$ ample: Find the midpoint of the given points, 3. $$P_1 = (3, -6) \text{ and } P_2 = (-5, 8)$$ $$\left(\frac{3+-5}{2}, -\frac{6+8}{2}\right) = (-1, 1)$$ 2. $$P_1 = (3, -6)$$ and $P_2 = (-5, -7)$ $$D = \sqrt{(3+45)^2 + (-6+17)^2}$$ $$D = \sqrt{64 + 1}$$ $$D = \sqrt{65}$$ 4. $$P_1 = (-3, 5)$$ and $P_2 = (1, 8)$ $$\left(\frac{-3+1}{2}, \frac{5+8}{2} \right) = \left(-1, \frac{13}{2} \right) \text{ or } \left(-1, 6.5 \right)$$ 5. Example: Write the standard form of the equation of the circle with radius r = 4 and center (h,k) = (4,3). Then graph the circle. $(x-h)^2 + (y-k)^2 = r^2$ Equation: $(x-4)^2 + (y+3)^2 = 4^2$ or $(x-4)^2 + (y+3)^2 = 16$ **Examples:** Find the center (h,k) and radius r of each circle, graph the circle. 6. $(x+1)^2 + (y-2)^2 = 25$ center:____(-1, 2) 7. $x^2 + (y+6)^2 = 20$ center: (0,-6) radius: 5 5_____ Examples: Complete the square. $$8. x^2 - 8x + 7 = 0$$ $$x^{2}-8x = -7$$ $x^{2}-8x+4^{2}=-7+4^{2}$ $(x-4)^{2}=9$ **Examples:** Find the center (h,k) and radius r of each circle, graph the circle. 8. $$x^2 + y^2 - 6x + 2y + 9 = 0$$ $$(x-3)^2 + (y+1)^2 = 1$$ Examples: Find the radius if the diameter is given, r=24+2 r= 12 $$\prod_{i=1}^{n} a = \sqrt{6} + \frac{1}{2}$$ Examples: Find the standard form of the equation of each circle. 9. Center at (-3,5) and a diameter of 24. $$\sqrt{2}$$ uation: $(x+3)^2 + (x-5)^2 = 144$ 10. Center at (1,0) and containing the point (-3,2). Center: (1,0) Radius: $\sqrt{20}$ or 4.5 $r^2 = (20)^2 = 20$ Equation: $(x-1)^2 + y^2 = 20$ $(x-1)^{2} + (y-0)^{2} = r^{2}$ $(-3-1)^{2} + (2-0)^{2} = r^{2}$ $16 + 4 = r^{2} \implies r = \sqrt{2024.5}$ 11. Endpoints of a diameter at (4,3) and (0,1). Center: (2,2) Equation: $$(\chi - 2)^2 + (y - 2)^2 = 5$$ $r^2 = (\sqrt{5})^2 = 5$ Diameter midpoint is center of diameter $$(2,2)$$ $(4,3)$ $(2,2)$ $(4+0)$ $(2,2)$ $(2,2)$ $$r = \sqrt{(4-2)^2 + (3-2)^2} \quad (2,2)$$ $$r = \sqrt{5} \text{ or } 2.2$$ 14-, = 15 . My . 1. 3 # 6.2 Circle Vocabulary, Arc and Angle Measures Circle: All points in a plane that are the same distance from a given point, called the center of the circle. Chord: A segment with both endpoints on a circle. Diameter: A chord that passes through the center of a circle. Radius: A segment with one endpoint on the circle and one endpoint at the center of the circle. Secant: A line that intersects a circle at two points. Tangent: A line in the plane of the circle that intersects a circle at exactly one point. Point of Tangency: The point where a tangent intersects a circle. Tangent Segment: A segment that touches a circle at one of its endpoints and lies in the line that is tangent to the circle at that point. **Example:** In circle P, name the term that best describes the given line, segment, or point. Example: In circle Q: identify a chord, a diameter, two radii, a secant, two tangents, and two points of tangency. chord: PM, Pk, kMsecant: tangents: radii: point of tangency: Minor Arc: All the points on a circle that lie in the interior of a central angle whose measure is less than 180°. Major Arc: All the points on a circle that do not lie on the corresponding minor arc. bi gger than 180 AB is a minor arc. Measure of a Minor Arc: The measure of its central angle. Measure of a Major Arc: 360° minus the measure of the minor arc. $$\widehat{mBD} = 100^{\circ}$$ $$\widehat{mBCD} = 360^{\circ} - 100^{\circ} = 260^{\circ}$$ Semicircle: An arc whose central angle measures 180°. \overline{PR} is a diameter. $m\widehat{PQR} = 180^{\circ}$ Examples: Name the major and minor arcs. Find the measure of each. Major arc: Minor arc: Major arc: Minor arc: same size/same shape Congruent Circles: Two circles that have the same radius. Congruent Arcs: Two arcs of the same circle or of congruent circles that have the same measure. Are arcs \widehat{AB} and \widehat{CD} congruent? Explain your reasoning. Examples: b) a) Adjacent Arcs: Two arcs of a circle that share an endpoint. Arc Addition Postulate: The measure of an arc formed by two adjacent arcs is the sum of the measures two arcs. \overrightarrow{AB} and \overrightarrow{BC} are adjacent arcs. $\widehat{mABC} = \widehat{mAB} + \widehat{mBC}$ **Examples:** \overline{AC} and \overline{BD} are diameters. Find the indicated measures. What theorem did you use to find it? vertical d) mED = 53 why? supplementary L) b) mBC = 145' 180-35= 145 e) mABE = 268' Supplementary L'S 53+35=88f) mABD = 215" why? Arc Addition Postulate Inscribed Angle: An angle whose vertex is on a circle and whose sides contain chords of the circle. Intercepted Inscribed Intercepted Arc: An arc that lies in the interior of an inscribed angle and has Arc Angle endpoints on the sides of the angle. WARNING: Don't get inscribed angles and central angles mixed up! Central Inscribed Angle Angle . MAT A pairicult. Theorem: If an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc. $$m \angle ADB = \frac{1}{2} m \widehat{AB}$$ $$\widehat{mAB} = 2 \, m \, \angle ADB$$ $$m \angle ADB =$$ $$m\widehat{AB} = 120^{\circ}$$ Examples: Find the measure of the inscribed angle or the intercepted arc. $$m \angle K = 42$$ Inscribed A Thm. If a triangle inscribed in a circle is a right triangle, then the hypotenuse is a diameter of the circle. > If $\triangle ABC$ is a right triangle with hypotenuse \overline{AB} , then \overline{AB} is a diameter of the circle. If a side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle. If \overline{AB} is a diameter of the circle, then $\triangle ABC$ is a right triangle with \overline{AB} as hypotenuse. **Examples:** Find the values of x and y in $\circ P$. Explain which rule or theorem you used. x+2x+90=180 X=30 1 x = 30° y = 90° Instibed A Thm. # Theorem: Inscribed Audah Weral Thm. • If a quadrilateral can be inscribed in a circle, then its opposite angles are supplementary. $$m \angle D + m \angle F = 180^{\circ}$$ $$m \angle E + m \angle G = 180^{\circ}$$ **Examples:** Find the values of x and y. pad I bras ", " to the fill $$x = 110'$$ $y = 67'$ $$x = 103^{\circ} y = 120$$ $$x = 99$$ $y = 90$ x = 103 y = 120 x = 99 y = 90 why: Inscribed Auad Thm for a, b of C a circle, then the measure of each angle formed is the average of the Theorem: measures of the arcs intercepted by the angle and its vertical angle. $$m \angle 1 = m \angle 3 = \frac{1}{2} (m \widehat{AB} + m \widehat{CD})$$ $$m\angle 2 = m\angle 4 = \frac{1}{2}(m\widehat{BC} + m\widehat{AD})$$ **Examples:** Find the value of x. Which Theorem or Rule did you use? angle are are $$x = \frac{3+2}{3}$$ $$x = \frac{x}{5}$$ and are are $\frac{x}{5} = \frac{x}{5} \frac{x}{5}$ angle = $$x + 114$$ $122 - x + 114$ $244 = x + 114$ $130 = x$ # SM2H 6.3 Inscribed Angles, Chord, Tangent and Secant Theorems Notes Theorems about Chords: Diameter Chord Than _ L bisect • If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc. If $\overline{BG} \perp \overline{FD}$, then $\overline{ED} \cong \overline{EF}$ and $\widehat{DG} \cong \widehat{GF}$ • If one chord is a perpendicular bisector of another chord, then the first chord is a diameter. If $\overline{JK} \perp \overline{ML}$ and $\overline{MP} \cong \overline{PL}$, then \overline{JK} is a diameter. **Examples:** \overline{MN} is a diameter of circle P. Find the length of \overline{AB} a) $\overline{AB} = \overline{}$ b) AB = 25 12.5 +12.5 2.5 Examples: Determine whether AB is a diameter of the circle. Which Theorem or rule did you use?. a) b) c) AB NOT DIAMETER why? not 1 L Bisector Thm. AB IS DIAMETER why 70 1 2) bisected AB NOT DIAMETER why? # If are Zarc then chood Zchord In the same circle, or in congruent circles, if two chords are congruent, then their corresponding minor ares are congruent. If AB \cong CD, then $\widehat{AB} \cong \widehat{DC}$ Conversa In the same circle, or in congruent circles, if two minor arcs are congruent, then their corresponding chords are congruent. If $\widehat{AB} \cong \widehat{DC}$, then $\widehat{AB} \cong \widehat{CD}$ **Examples:** Find the value of x. Explain which theorem you used. What is true about $\triangle AHB$ and $\triangle CHD$? 9x=81 X=9 x = Q Why? chord? ehad then are Zave central L'S $(50x + 2)^{\circ}$ d) \overline{XZ} and \overline{YW} are diameters Why? vertical L'SE and arc Zarc Which Theorem did you use? Chord = chord Theorem: Intersecting chord Thin. If two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. $$\overline{AF \cdot FC} = \overline{BF \cdot FD}$$ Examples: Find the value of x. $$x = 10$$ $$x = 12$$ 8 x=96 X=12 c) Theorems About Tangents: Tangent I radius • If a line is tangent to a circle, then it is perpendicular to the radius drawn at the point of tangency If line l is tangent to circle C at B then $l \perp CB$ In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle. If $l \perp CB$: then line l is tangent to circle C at B. Low Minds HAT THEOREM Theorem: If two segments from the same point outside a circle are both tangent to the circle, then they are congruent. If \overline{SR} and \overline{ST} are tangent to $\odot P$ at points R and T, then $\overline{SR} \cong \overline{ST}$. **Examples:** \overline{DE} and \overline{DF} are both tangent to $\bigcirc C$. Find the value of x. #### Theorems About Secants: ### **Intersecting Secants Theorem** If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment. In the circle, $$\overline{MO}$$ and \overline{MQ} are secants that intersect at point M . So, $\underline{MN} \cdot \underline{MO} = \underline{MP} \cdot \underline{MO}$. ### Examples: a) In the circle shown, if MN=10, NO=17, MP=9, then find the length of PQ. b) In the circle shown, if NO=2x, MN=10, PQ=2x+3, MP=9, then solve for x. Intersecting Secant-Tangent Theorem If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external ecant segment. $$\chi^{2} = 8 \cdot 18$$ $\chi^{2} = 144$ $\chi = 12$ In the circle, \overline{UV} is a tangent and \overline{UY} is a secant. They intersect at point U. So $(UV)^2 = UX \cdot UY$. Example: In the circle shown above, if UX=8, and XY=10, then find the length of UV. If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs. $$m\angle A = \frac{1}{2} \Big(mDE - mBC \Big)$$ ## Secant and Tangent $$m\angle A = \frac{1}{2} \left(mDC - mBC \right)$$ ## Two Tangents allthree Find the Value of x. 1. $$x = \frac{120-54}{2} = \frac{66}{2} = 33^{\circ}$$ # Avea of circle=17.12 Circumference of circle = ZTTY M2H 6.3 Arc Length and Sector Area Notes Arc Length **Examples:** Find the length of \widehat{AB} . Write your answers in terms of π and as decimals rounded to the nearest bundredth. **Examples:** Find the area of each sector. Write your answers in terms of π and as decimals rounded to the nearest tenth. b) c) Sector Area = $$\frac{210 \cdot 11.9^{2}}{360} \cdot \frac{1701011}{360}$$ Sector Area = Sector Area = $$\frac{360 \text{ TT} \cdot 7^2}{360 \text{ TT} \cdot 7^2} = \frac{210 \text{ SECTOV}}{360 \text{ TT} \cdot 9^2} = \frac{17010\text{ TT}}{360} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{4320\text{ TT}}{360} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{4320\text{ TT}}{360} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{4320\text{ TT}}{360} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ TT} \cdot 120} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ eTT} \cdot 6^2} = \frac{120 \text{ eTT} \cdot 6^2}{360 \text{ eTT}$$