8.5 Applications of Trigonometry

Angle of elevation- is the angle made with the ground and your line of sight to an object above you.

Angle of depression- is the angle from the horizon and your line of sight to an object below you.

Compass Bearing- is the direction towards which you are headed, as shown by a compass. It is most commonly written in the form N 6° E, meaning the bearing that makes an angle of

6° with North towards East. (North or South is usually given before East or West, and the angle never exceeds 90°.)

Write the correct compass bearing for the following points.

Draw a diagram for each of the following problems. Then write an equation to represent the situation and then solve the problem. Round your answers to the nearest tenth.

Example 1:

From a boat on the lake, the angle of elevation to the top of a cliff is 13°. If the base of the cliff is 1366 feet from the boat, how high is the cliff?

$$tan 13 = x$$
 1366

$$X = 1366 tan 3$$

$$X = 315.37 ft$$

Example 2:

From a balloon 910 feet high, the angle of depression to the ranger headquarters is 64°. How far is the headquarters from a point on the ground directly below the balloon?

Example 3:

A person is watching a boat from the top of lighthouse. The boat is approaching the lighthouse directly. When first noticed, the angle of depression is 18°. When the boat stops, the angle of depression is 50°. The lighthouse is 200 feet tall. How far did the boat travel from when it was first noticed until it stopped?

$$78^{\circ} = 700$$

$$72^{\circ} = 700$$

Example 4:

A person is 25 feet from the base of a barn. The angle of elevation from the level ground to the top of the barn is 70°. How tall is the barn?

Example 5:

A sledding run is 500 yards long with a vertical drop of 65.7 yards. Find the angle of depression of the run.

Example 6: A sailboat leaves the dock at a bearing of N 37° E and travels a distance of 100 km. Immediately after, the boat turns and travels due south. How far does the boat need to travel in order to be due east of the

Example 7: Two planes leave from the airport at the same time. Plane A travels at a bearing of *S* 45° *W* and travels at a speed of 527 mph. Plane B travels at a bearing of *N* 45° *W* and travels at a speed of 650 mph.

After 2 hours how far apart are the planes?

W

Sulphus

Solve the triangle created by the two planes and the airport after the 2 hours of travel?

$$1300^{2} + 1054^{2} = X^{2}$$

 $1690000 + 1110916 = X^{2}$
 $\sqrt{2800916} = \sqrt{X^{2}}$
 $1673.59 = X$
Miles