4.3 Writing equations from a graph or from set of information

& opposite

Examples: Write a quadratic equation or function in Vertex Form: $f(x) = y = a(x-h)^2 +$

If you know the vertex of a parabola, (h,k), then you still need at least one other point on the parabola in order to write an equation.

- Use the vertex form and fill in all the information you have.
- Then use the point on the parabola and substitute in for x and y.
- Solve for a
- Write your final equation

b) Vertex:
$$(-5,3)$$
, passes through $(-1,-29)$
 $y = a (x+5)^2 + 3$ plug in vertex

 $-2q = a (-1+5)^2 + 3$ plug in point

 -3
 $-32 = a (4)^2$
 $-32 = 16a$
 $-2 = a$
 $y = -2(x+5)^2 + 3$

Examples: Write the equation of each parabola based on the information in the graph. Follow the steps outlined above. Leave the equations in Vertex Form.

Examples: Write a quadratic equation or function in Factored Form: f(x) = y = a(x - p)(x)

Use the factored form if you know the roots (a.k.a. solutions, x-intercepts, zeros). You will still need to know at least one other point on the parabola in order to write an equation.

- Use the factored form and fill in all the information you have.
- Then use the point on the parabola and substitute in for x and y.
- Solve for a.
- Write your final equation

a) Roots:
$$(3,0)&(-2,0)$$
, goes through $(2,-4)$

$$y = a(x-3)(x+2)$$
 $-4 = a(2-3)(2+2)$
 $-4 = a(4-1)(4)$
 $-4 = a(x-3)(x+2)$
 $y = (x-3)(x+2)$

$$y = a(x-3)(x+2)$$

$$12 = a(0-3)(0+2)$$

$$12 = a(-3)(2)$$

$$12 = -6a$$

$$-2 = a$$

$$-2 = a$$

$$y = -2(x-3)(x+2)$$

P P
$$x = 0$$
 X 9 c) Zeros: $x = -1 & x = 3$, goes through $(6, -10)$

$$\begin{array}{r}
 3 & y = a & (x+1)(x-3) \\
 -10 & = a & (6+1)(6-3) \\
 -10 & = a & (7)(3) \\
 -10 & = 21a \\
 -\frac{10}{21} & = a
 \end{array}$$

e) Solutions:
$$x = 8i & x = -8i$$
, passes through $(-2, -204)$

Namples: Write the equation of each parabola based on the information in the graph. Leave the equations in Factored Form.

y = - (x+3)(x-3) Examples: Write a quadratic equation or function in Standard Form: $f(x) = ax^2 + bx + c$

- write the equation in either Vertex Form or Factored Form (whichever seems easier)
- Then use correct order of operations to multiply/distribute in order to get rid of parenthesis
- List the three terms in correct order: x^2 , then x, then the constant term

Use the graph just above to write the equation in Standard Form a)

10)

$$y = 3x^2 - 12x + 12 + 12$$

 $y = 3x^2 - 12x + 13$

Write the equation with the following characteristics in Factored Form, Vertex Form and Standard 6) Form (yes, we'll need to complete the square to get it into vertex form (*)

mass at (-3,0) and (5,0) and goes through the point (2,-15)

