104 Venn Diagrams

Sample Space: The set of all possible outcomes for a chance process.

Event/Subset: An outcome or set of outcomes from the sample space.

Complement (A): "Not" ~A

All outcomes in the sample space that are not part of the event.

Chance Process	Sample Space	Event/Subset	Complement
Flip a coin	$S = \{\text{heads, tails}\}$	$B = \{\text{heads}\}$	$B^C = \{ \text{tails} \}$
Roll a die	$S = \{1, 2, 3, 4, 5, 6\}$	even numbers $E = \{2, 4, 6\}$	$E^{C} = \{1, 3, 5\}$
Pick a letter in the word "probability"	$S = \{P, R, O, B, A, I, L, T, Y\}$	vowels $V = \{O, A, I, Y\}$	$V^C = \{P, R, B, L, T\}$

Union $(A\bigcirc B)$: ("Or") "Either"

All of the elements that are in A or B or both.

Intersection (AB) "And" "Both", "Overlap", "In common"

- All of the elements that are in both A and B.
- If the two sets don't have anything in common, the intersection is the "empty set", indicated by \emptyset or $\{\ \}$.

Note: If you want to write "everything in
$$A$$
 that isn't in B ," you can write either

 $A \cap B^C$ or $A - B$.

Subtract

Sign

("Take away")

Examples: Shade the appropriate portion of the Venn diagram.

1. A^C

2. $(A \cap B)$

3. B-A Take away

Examples:

- Chance Process: Rolling a 10-sided die.
 - Event A: Rolling an odd number
 - Event B: Rolling a prime number
 - a. What is the sample space?

b. List the outcomes in each event.

c. Draw a Venn diagram representing the sample space with subsets A and B.

d. List all the outcomes in $A \subset B$.

f. List all the outcomes in A. Everything not in A

g. List all the outcomes in $(A \cup B)^{C}$ not Everything not in A or B

h. List all the outcomes in A-B. Everything in A but not in B

- Chance Process: Reaching into a messy refrigerator and grabbing a food at random.
- Sample Space: S = {broccoli, carrots, moldy cheese, milk, orange, lettuce, lime jello, bologna, egg, corn,
 - Event A: Picking a vegetable
 - Event B: Picking something green
 - a. List the outcomes in each event.

b. Draw a Venn diagram representing the sample space with subsets A and B.

c. List all the outcomes in $A \cup B$.

{ carrors, conprocedi, lettuce, celey, cheese, lime jello 3

d. List all the outcomes in $A \cap B$.

& proceedi, lettuce, celery 3

e. List all the outcomes in B^{C} .

& carrots, orange, egg, corn, milk, bolognas

f. List all the outcomes in $(A \cap B)^{C}$.

Sorange, egg, milk, both carrots, corn, chare, 11/10/3

g. List all the outcomes in B-A.

{ moldy chase, line jello}

Examples:

A political ad was run on TV and on radio.

- 33% of people saw it on TV.
- 21% heard it on the radio.
- 10% of people both saw it on TV and heard it on the radio.

Determine what percent:

a) only saw it

b) only heard it

c) neither heard it or saw it

d) did not see it

A sample of 60 people are asked if they enjoy watching basketball and if they enjoy watching football.

- 25 people say they enjoy watching football
- 40 people say they enjoy watching basketball
- 15 people say they enjoy watching both

Determine how many people:

a) enjoy football but not basketball

b) enjoy basketball but not football

c) don't enjoy either basketball or football

d) don't like football

