Objective: Circle Vocabulary, Arc, and Angle Measures

Circle: All points in a plane that are the same distance from a given point, called the center of the circle.

Chord: A segment with both endpoints on a circle.

Diameter: A chord that passes through the center of a circle.

Radius: A segment with one endpoint on the circle and one endpoint at the center of the circle.

Secant: A line that intersects a circle at two points.

Tangent: A line in the plane of the circle that intersects a circle at exactly one point.

Point of Tangency: The point where a tangent intersects a circle.

Tangent Segment: A segment that touches a circle at one of its endpoints and lies in the line that is tangent to the circle at that point.

$$\overline{MN}$$
 is a tangent segment.

Example: In circle P, name the term that best describes the given line, segment, or point.

 \overline{AF} C \overline{EG} \overline{CE} \overline{PF} \overline{BD} \overline{PG} P

Example: In $\odot Q$, identify a chord, a diameter, two radii, a secant, two tangents, and two points of tangency.

Chord:

Diameter:

Radii:

Secant:

Tangents:

Points of tangency:

Central Angle: An angle in a circle whose vertex is the center of the circle and whose sides are radii of the circle

Minor Arc: All the points on a circle that lie in the interior of a central angle whose measure is less than 180°.

Major Arc: All the points on a circle that do not lie on the corresponding minor arc.

 \widehat{AB} is a minor arc.

ADB is a major arc.

Measure of a Central Angle: is the measure of the angle with its vertex at the center of a circle.

Measure of a Minor Arc: is the measure of its central angle.

Measure of a Major Arc: 360° minus the measure of the minor arc.

Example:

Measure of central angle:

3-1 JU - 2N

...

Measure of the minor arc:

Measure of the major arc:

Name the central angle:

Name the major arc:

Name the minor arc:

Examples: Name the major and minor arcs and the central angle. Find the measure of each.

a)

b

Examples: \overline{AC} and \overline{BD} are diameters. Find the indicated measures.

a) \widehat{mDC}

d) \widehat{mDE}

b) mBC

e) mABE

c) \widehat{mCDE}

f) \widehat{mABD}

Intercepted Arc: An arc that lies in the interior of an inscribed angle and has endpoints on the sides of the angle.

Inscribed Intercepted Arc Angle

WARNING: Don't get inscribed angles and central angles mixed up!

Theorem: If an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc.

$$m\angle ADB = \frac{1}{2}m\widehat{AB}$$

$$\widehat{mAB} = 2m\angle ADB$$

Example:

 $m\angle ADB = 60^{\circ}$

$$\widehat{mAB} = 120^{\circ}$$

Examples: Find the measure of the inscribed angle or the intercepted arc.

. a)

b)

Objective: Tangent and Chord Theorems

Theorem:

If two chords intersect inside a circle, then the measure of each angle formed is the average of the • measures of the arcs intercepted by the angle and its vertical angle.

$$m\angle 1 = m\angle 3 = \frac{1}{2} \left(\widehat{mAB} + \widehat{mCD} \right)$$

$$m\angle 2 = m\angle 4 = \frac{1}{2} \left(\widehat{mBC} + \widehat{mAD} \right)$$

Examples: Find the value of x.

110°

c)

d)

Inscribed Polygon: A polygon whose vertices all lie on a circle.

Theorem:

• If a quadrilateral can be inscribed in a circle, then its opposite angles are supplementary.

$$m\angle D + m\angle F = 180^{\circ}$$

$$m\angle E + m\angle G = 180^{\circ}$$

Examples: Find the values of x and y.

a)

b)

c)

Theorems:

• If a triangle inscribed in a circle is a right triangle, then the hypotenuse is a diameter of the circle.

If $\triangle ABC$ is a right triangle with hypotenuse \overline{AB} , then \overline{AB} is a diameter of the circle.

• If a side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle.

If \overline{AB} is a diameter of the circle, then $\triangle ABC$ is a right triangle with \overline{AB} as hypotenuse.

Examples: Find the values of x and y in $\odot P$.

a)

b)

c)

Theorems About Tangents:

• If a line is tangent to a circle, then it is perpendicular to the radius drawn at the point of tangency.

If line l is tangent to $\bigcirc C$ at B, then $l \perp \overline{CB}$.

• In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.

If $l \perp \overline{CB}$, then line l is tangent to $\odot C$ at B.

Examples: Find the length of the missing segment. Assume that segments which appear to be tangent to the circle are tangent to the circle.

a)

b)

c)

d)

Examples: Determine whether \overline{AB} is tangent to the circle. Explain your reasoning.

a)

h)

Date:

Section: 12.3

Objective: Arc Length and Sector Area

Arc Length: Arc Length = $\frac{\theta}{360^{\circ}}$ · circumference of circle = $\frac{\theta}{360^{\circ}}$ · $2\pi r$

Examples: Find the length of \widehat{AB} . Write your answers in terms of π and as decimals rounded to the nearest hundredth.

a)

b)

c)

Sector Area: Sector Area = $\frac{\theta}{360^{\circ}}$ · area of circle = $\frac{\theta}{360^{\circ}}$ · πr^2

Examples: Find the area of each sector. Write your answers in terms of π and as decimals rounded to the nearest tenth.

a)

b)

c)

Date:

Section: 12.4

Objective: More Tangent and Chord Theorems

Theorem: If two segments from the same point outside a circle are both tangent to the circle, then they are congruent.

If \overline{SR} and \overline{ST} are tangent to circle P at points R and T then $\overline{SR} \cong \overline{ST}$.

Examples: \overline{DE} and \overline{DF} are both tangent to \odot C. Find the value of x.

Theorem: If two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

$$\overline{AF} \cdot \overline{FC} = \overline{BF} \cdot \overline{FD}$$

Examples: Find the value of x.

Equation of a Circle with Center at the Origin and Radius $r: x^2 + y^2 = r^2$

Examples: Determine the center and radius of each circle, then graph the circle.

a)
$$x^2 + y^2 = 36$$

b)
$$x^2 + y^2 = 13$$

Radius:

Radius:

Center:

Center:

Example: Write the equation of a circle with center at (0,0) and radius 11.

Equation of a Circle with Center at (h,k) and Radius $r: (x-h)^2 + (y-k)^2 = r^2$

Examples: Determine the center and radius of each circle, then graph the circle.

a)
$$(x-2)^2 + (y-1)^2 = 9$$

Radius:

Center:

c)
$$(x+3)^2 + (y+1)^2 = 12$$

Radius:

Center:

b)
$$(x+3)^2 + (y-5)^2 = 1$$

Radius:

Center:

d)
$$x^2 + (y-2)^2 = 36$$

Radius:

Center:

Examples: Write the equation of the circle with the given center and radius.

a)
$$(2,5)$$
; $r=7$

b) (3,-1); $r = \sqrt{13}$

Equation:

Equation:

c)
$$(-2,12)$$
; $r=15$

d) (-5,0); $r = 2\sqrt{3}$

Equation:

Equation:

e)
$$(-6,-9)$$
; $r=1$

f) (0,4); $r = \frac{1}{2}$

Equation:

Equation:

g)

h)

Radius:

Radius:

. Center: _____

Center:

Equation:

Equation: