

Name:_____

Period:____

2.4 Analyzing Function Graphs: Symmetry, End Behavior, Review

Write whether the graph has even, odd or no symmetry. Write the end behaviors in limit notation. If a limit does not exist, write DNE.

1.
$$f(x) = -x^2 + 8x - 7$$

Symmetry:____

Left End Behavior: $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

Right End Behavior: $\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$

2.
$$f(x) = -\sqrt{x+4} - 1$$

Symmetry:_____

Left End Behavior: $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

Right End Behavior: $\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$

3.
$$g(x) = |x| - 5$$

Symmetry:_____

Left End Behavior: $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

Right End Behavior: $\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$

4.
$$g(x) = -2\sqrt[3]{x}$$

Left End Behavior:
$$\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$$

Right End Behavior:
$$\lim_{x\to\infty} f(x) = \underline{\qquad}$$

5.
$$h(x) = x^3 - 3x$$

Left End Behavior:
$$\lim_{x \to -\infty} f(x) = \underline{\qquad}$$

Right End Behavior:
$$\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$$

Left End Behavior:
$$\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$$

Right End Behavior:
$$\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$$

- A. Write the domain and range in interval notation.
- B. Write the maximum and minimum <u>points</u> as ordered pairs and the maximum and minimum values as y-coordinates.
- C. Write the intervals where the graph is increasing, decreasing, and constant in interval notation.
- D. Write the intercepts as ordered pairs.
- E. Write the intervals in interval notation where the graph is positive and negative.
- F. Write whether the graph has even, odd or no symmetry.
- G. Write the end behaviors in limit notation. If a limit does not exist, write DNE.
- ***If something is not applicable to the graph, write N/A.

7.

Domain: Range:

Positive:_____ Negative:____

Relative Maximum Point:______ Value:_____

Relative Minimum Point: Value:

Increasing: _____ Decreasing: _____

Constant:______ Symmetry: _____

Left End Behavior: $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

Right End Behavior: $\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$

8.

Domain:______ Range:_____

x-intercept(s):______ y-intercept:_____

Positive:_____ Negative:_____

Relative Maximum Point:______ Value:_____

Relative Minimum Point:______Value:_____

Increasing: _____ Decreasing: _____

Constant:_____ Symmetry: _____

Left End Behavior: $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$

Right End Behavior: $\lim_{x\to\infty} f(x) = \underline{\hspace{1cm}}$

Create a graph that satisfies the given description.

9. Domain: [-7,7]

Range: [-2,4]

Decreasing: $(-7,-4) \cup (4,7)$

Increasing: (-4,-1)

Constant: (-1,4)

10. Domain: [-4,7]

Range: [-2,2]

Positive: $(-2,3) \cup (5,7]$

Negative: $[-4,-2) \cup (3,5)$

11. Domain: $(-\infty, \infty)$

Range: $[-5, \infty)$

Increasing: $(1, \infty)$

Decreasing: $(-\infty, 1)$

Constant: Nowhere

Positive: $(-\infty, -1) \cup (3, \infty)$

Negative: (-1,3)

