Period:_____

2.1 Domain and Range Review

Indicate whether each relation is a function by circling yes or no. Then write the relation as a set of ordered pairs. Then find the domain and range.

	-3 -1	6 8	$\begin{array}{c} 3 \\ -8 \end{array} \xrightarrow{5} 1 \\ -8 \end{array}$
	1 3	-3 -3	
Function? Yes / No			Function? Yes / No

Ordered Pairs:

Name:___

Domain:

SM 2

Œ

Range:

Range:

Domain:

Ordered Pairs:

Indicate whether each relation is a function by circling yes or no. Then find the domain and range.

3. $\{(-6,3), (4,-2), (4,7), (3,-8)\}$	4. $\{(1,2),(2,3),(5,4),(-1,3)\}$	
Function? Yes / No	Function? Yes / No	
Domain:	Domain:	
Range:	Range:	

Indicate whether each graph represents a function by circling yes or no. Then write the relation as a set of ordered pairs. Then find the domain and range.

7. The circumference of a circle is given by the diameter multiplied by pi, $C = \pi d$.

Is this a function? Why or why not?

Which variable represents the domain? Circumference or diameter

Domain:

Range:

Determine if the graph is a functions. Then state the domain and range in interval notation.

