e.g.)

The following properties are true for all real numbers a and b and all integers m and n, provided that no denominators are 0 and that 0^0 is not considered.

1 as an exponent:	e.g.)
0 as an exponent:	e.g.)
The Product Rule:	e.g.)
The Quotient Rule:	e.g.)
The Power Rule:	e.g.)
Raising a product to a power:	e.g.)
Raising a quotient to a power:	e.g.)
Negative exponents:	e.g.)
	e.g.)

To simplify an expression containing powers means to rewrite the expression without parentheses or negative exponents.

Examples: Simplify the following expressions.

a)
$$m^5 \cdot m^7$$

b)
$$(5a^2b^3)(3a^4b^5)$$
 c) $\frac{r^9}{r^3}$

c)
$$\frac{r^9}{r^3}$$

d)
$$\frac{p^3}{p^7}$$

e)
$$\frac{10x^{11}y^5}{2x^4y^7}$$

f)
$$\frac{4x^3y^2}{6x^7y}$$

g)
$$(-2)^4$$

i)
$$5x^{-4}y^3 \cdot x^2y^{-1}$$

j)
$$\frac{1}{6^{-2}}$$

k)
$$9^{-3} \cdot 9^8$$

$$1) \ \frac{3x^2}{15x^{-3}y^{-4}}$$

m)
$$(3^5)^4$$

n)
$$\frac{y^{-5}}{y^{-4}}$$

o)
$$(y^{-5})^7$$

p)
$$(a^{-3})^{-7}$$

q)
$$(-2x)^3$$

r)
$$\left(\frac{x^2}{2}\right)^4$$

s)
$$(3x^5y^{-1})^{-2}$$

t)
$$\left(\frac{y^2z^3}{5}\right)^{-3}$$