8.1 The Pythagorean Theorem/Trigonometric Ratios

In a right triangle, $a^2 + b^2 = c^2$, or $leg^2 + leg^2 = hypotenuse^2$.

★ The hypotenuse (the longest side – the one across from the right angle) should always be by itself on one side of the equation.

To find the length of the hypotenuse:

To find the length of a leg:

$$a^{2} + 5^{2} = 13^{2}$$

$$a^{2} + 25 = 169$$

$$a^{2} = 169 - 25$$

$$a^{2} = 144$$

$$a = \sqrt{144}$$

$$a = 12$$

Examples: Find the length of the missing side of each triangle.

a)

f)

Right Triangle Trigonometric Ratios

Trigonometry: The study of the relationships among the sides and angles of right triangles.

Trigonometric Ratio: A ratio of the lengths of two sides of a right triangle. The three main trigonometric rations are sine (sin), cosine (cos), and tangent (tan).

If θ is an acute angle of a right triangle, "adj" is the length of the leg adjacent (next to) θ ,

"opp" is the length of the leg opposite θ , and "hyp" is the length of the hypotenuse, then:

Examples: Find the exact values of $\sin \theta$, $\cos \theta$, $\tan \theta$, $\csc \theta$, $\sec \theta$ and $\cot \theta$.

Scanned with CamScanner

No matter how big the triangle is, the values of the trigonometric functions for a certain size angle will remain the same. For example, in the diagram below, $\tan 27^\circ = \frac{x}{a} = \frac{y}{b} = \frac{z}{c}$. The value of the tangent is the same in all three triangles even though they are different sizes. The same is true for the sine and cosine.

Examples: Draw and label a triangle, find the length of the missing side, and find the requested values.

Find
$$sin\theta$$
, $cos\theta$, $tan\theta$, $csc\theta$, $sec\theta$, and $cot\theta$ if $sin\theta = \frac{5}{13}$

Identify which trigonometric ratio is needed to solve for the missing side. Write the correct equation, then solve. Round to the nearest hundredths.

$$\frac{5 ins2}{1} = \frac{10}{x}$$

$$\frac{X \sin 52}{\sin 52} = \frac{10}{\sin 52}$$

f)

h)

CAH

When labeling a triangle, there are a few things to remember.

- 1. Capital letters refer to angles
- 2. Lower case letters are the side opposite their capital letter angle.
- 3. In a right triangle, "C" is 90° and "c" is the hypotenuese

In each triangle ABC, angle C is a right angle. Find the value of the trig function indicated.

a) Find Find cosA if a = 8, c = 17, b = 15.

b) Find cscA if a = 14, b = 2, and $c = 10\sqrt{2}$.

Examples: Use a calculator to approximate each value to four decimal places. Make sure your calculator is in degree mode.

- a) sin 120°
- .8660
- b) cos 350°
- . 9848
- c) tan -30°

d) cot 280°